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Quantum structure of the motion groups of the 
two-dimensional Cayley-Klein geometries 

A Ballesteros, F J Herranz. M A del Olmo and M Santander 
Departamento de Fisica Te6rica Univenidad de Valladolid, H 7 0 1  I Valladalid, Spain 

Received 8 April 1993 

Abstract. A simultaneous and global scheme of quantum defonnation is defined for the 
set of algebras corresponding to the groups of motions of the two-dimensional Cayley-Klein 
geomeuies. Their central extensions are also considned under this unified partem In both cases 
some fundamenral propties characterizing the classical CK geometries (as the existence of a 
set of commuting involutions. contractions and dualities relationships), remain in Ihe quantum 
version. 

1. Introduction 

During the last few years. a wide range of literature has appeared about quantum groups 
(QG) (see 11-31 and references therein). The theory of quantum deformations of the 
universal enveloping algebras of semisimple Lie algebras has been studied rather extensively. 
However, for non-semisimple cases the results are partial. The most successful technique 
in order to get quantum deformations of non-semisimple algebras has been shown to be 
a generalized contraction method developed by Celeghini et al 141. These authors have 
obtained [5,6] a onedimensional Heisenberg QG and a two-dimensional Euclidean QG, 
E(2),, by contraction of SU(2) , .  In [7] a three-dimensional Euclidean QG, E(3),, as well 
as some of its representations are obtained from SO(4),. By contracting again E(3),, 
a (2 + I )  Galilei Qc, G(2 + can be obtained. In the opposite sense, E(3), and a 
(2+ 1) Poincark QG, P(2+ l),, are realized by an expansion of G(2+ l),. Throughout all 
these works, the essential feature is that the deformation parameter has to be transformed 
under contraction. Furthermore, physical applications of these algebras have been found 
by the same authors [8-111. All these physical integrable models are strongly related 
with the presence of deformed commutation relations within the quantum algebra structure.. 
Lukierski et ~l have also studied (3 + 1) Poincar6 quantum algebras starting from the real 
forms U,(O(3, 2)) of LI,(S[(4, 0) and following again a contraction method [12-141. (See 
also [15] for another method to get consistent Hopf structures corresponding to some of 
these groups). 

On the other hand, the classical versions of most of these groups appear as groups of 
motions of Cayley-Klein geomenies (CKG). Recently a group-theoretical approach has been 
given for the N-dimensional CKG [16-18]: we want to use this scheme in order to build a 
unified pattem for the q-deformation of the Lie algebras ana of the Lie groups of motions 
of these CKG. Throughout this paper the leading idea is to develop a scheme which might 
be extended to higher dimensions. Of course, the starting point is the N = 2 case (whose 
geometries will be hereafter referred as ZD-CKG) where the groups of motions are S0(3), 
SO@, I), the ( I  + I )  Galilei and Poincark groups and the Euclidean plane group E ( 2 ) .  

0305-447043/215801t23$07.50 @ 1993 IOP Publishing Ltd 5801 
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The non-simple groups in this set can be got by means of Inonu-Wigner [ 191 contractions, 
starting from SO(3) and/or SO(2, I ) .  

By using a different procedure Man’ko and Gromov [20,21] havc studied the 
contractions of the irreducible representations of the so-called CKq unitary and CKq 
orthogonal algebras, i.e. a quantum version of the families of algebras obtained from su(2) 
and so(3) by contraction and analytic prolongations. The result of an Inonii-Wigner (IW) 
contraction is formally given in this case by simply replacing same ‘parameters’ from real 
or complex imaginary values to double ones. The CK algebras are thus quantized, but the 
contracted cases do not correspond to the quantizations of algebras given by Celeghini et a1 
due to the fact that the deformation parameter is left unchanged under contraction. Another 
feature of the Man’ko and Gromov approach is that the contracted CK q-algebras can have no 
deformed commutation relations, and are therefore less suitable as q-symmetries of physical 
systems in the spirit of the above mentioned works. 

In our global scheme of the ZD-CKG the CK groups and their related CKG are determined, 
as we shall see in section 2, by two real parameters (KI, KZ) that have-in the classical case- 
a precise geometrical meaning: they are, respectively, the curvatures of the spaces of points 
and lines of the geometry. Consequently, our approach to the simultaneous quantization 
of the ZDCK groups is more geometrical than that of Man’ko and Gromov 122.231. We 
start from the classical (non-deformed) CK algebras and we endow these algebras with a 
deformed Hopf structure [NI, getting a simultaneous quantization of all of them. This 
deformation has an essential property: the specific characteristic relationships among the 
2D-CKG appearing in the classical case (involutions, contractions and dualities) are preserved 
in their quantum version by defining a generalization of this underlying ‘geometrical’ 
structure. In particular, our generalized scheme prevents the deformed commutation relation 
to disappear and contains as generalized contractions the ones defined in [5-71. When 
applied to the specific cases of E(2),, G(l + I), and P ( l  + our method leads to 
the results of Celeghini et al. It is interesting to mention that in their quantization and 
contraction procedures, these authors assume the rather natural commutative diagram: 

F - t O  
G, 4 CG, 

,-+I J. q-1 J. 
F+O 

G -+ CG. 

Thus, the process of classical limit (q + 1) that goes from the quantum group to its classical 
version commutes with the contraction limit ( E  + 0) that carries a (quantum) group to its 
contracted (quantum) version. In our approach, the Hopf structure is defined a priori for 
all the algebras, and this commutative diagram arises after the introduction of the whole CK 
structure is completed. Furthermore, a ‘regular’ description of contractions is also obtained, 
in the sense that the contracted group can be reached both as the ‘limit’ E + 0 of the 
pertinent family, and also considered by itself when one (or more) of the constants ~j takes 
on zero values. 

There is another interesting result that arises from our perspective: the equivalence 
between the emergence of a kind of contraction that transforms the deformation parameter 
and the interpretation of the latter--essential in the physical models quoted before-as a 
fundamental scale. Both statements are recovered at the same time from the quantum CK 
structure. From a physical point of view, the fundamental involutions are linked with parity 
and time reversal transformations. Since their quantum generalization includes an action of 
these automorphisms on the deformation parameter, this immediately acquires a dimensional 
interpretation. 
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We also present a quantization scheme for the central extensions of the above-CK 
algebms. It is well known that the extended groups are sometimes the physically relevant 
ones in quantum mechanics. Thus, it is the central extension of the Galilei group G(3 + I )  
which gives rise to the mass of the physical system having Galilean symmetry; the pertinent 
realizations are the representations up to a factor of the Galilei group, whose equivalence 
classes are in relation with the factor systems [ Z ] .  Overall, the second cohomology group of 
any of these 2D-CK algebras 1261 is either equal to W2, W or IO] (this for the simple algebras 
so(3) and so(2, I)). In order to present a global study and to shed light on the behaviour 
of these extensions under contraction, it turns out to be fruitful to consider extensions of all 
the CK algebras either by R2 or B, though for some cases these extensions are trivial (yet 
become non-trivial by contraction 1271). In the quantum case, a global Hopf structure for 
all the extended CK algebras is given by considering as primitive one of the two generators 
of the central extensions. 

This paper is organized as follows. Section 2 presents an overview about the main 
features of the 2D-CKG, paying special attention to the properties that will be COnServed in 
the quantum case: involutions, geometrical structure related by contractions and dualities. 
We also describe the central extensions of all the CK algebras and we give a generalization 
of the above mentioned structure to this case. Section 3 develops in a detailed manner the 
quantization for both the non-extended and the extended CK algebras. In the next section 
we study the properties of the 2D-CKG that remain after quantum deformation, in both the 
non-extended and the extended cases. Finally some remarks relevant to the paper. 

2. The Cayley-Klein algebras 

We start this section by presenting an overview about the 2D-CKG in order to make this 
paper self-contained (see also [16,18]). A more detailed and thorough exposition of the 
classical case is in preparation [ 171. The second part deals with the central extensions of 
the CK groups. We give a detailed and global exposition; see also [25-30] where aspects 
of some cases are discussed separately. 

2.1. The two-dimensional Cayley-Klein geometries 

By a 2D-CKG we understand a geometrical system with two ZD-manifolds of points X‘O’ and 
lines X“’, both of which are symmetric homogeneous spaces of a three-dimensional Lie 
group G, relatively to a system of two commuting involutions of the Lie algebra g of G. 
More precisely, the requirements are: 

( I )  There exist two commuting involutions SIo, and S‘I, of the Lie algebra of G, g, with 
one-dimensional subalgebras of invariant elements h‘” and $‘I), respectively. 

(2) The group G acts transitively and effectively on the symmetric homogeneous spaces 
X‘O’ = G/H“’ and X“’ = C / H “ ’ ,  where Hfo’ and H(’) are the subgroups corresponding 
to the subalgebras Ifo’ and h(I’. 

These two conditions suffice to characterize completely the ZD-CKG from a group- 
theoretical point of view. If we call 512 (resp PI)  the invariant element of SI,,, (resp s‘~,), 
a basis of 5 can be obtained by adding the invariant element PZ under S,zl = S,O, . S,I~. In 
this basis, the involutions are given by 

StO’ : (9, 9 . 4 2 )  - (-&. - 4 9  512) Sfl, : (PI7 9,512)  -+ (PI, -4, - 4 2 ) .  

(2.1) 
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Note that the identity and the involutions (S(o) ,  &I), Stz)) determine a 252 @ Zz Abelian 
group. 

A set of measures of ‘separation’ between points andtor lines can be defined in a natural 
way; they are preserved under the action of G. It is easy to show that the systems satisfying 
the two requirements are characterized by two real parameters, each of which can be rescaled 
to either I ,  0 or - 1, so there are nine essentially different systems. 

In fact, the general commutation relations for PI, PZ and J I Z  will be 

[JIz, Pi1 = A [JIz. 4 1  = B [Pi, SI = C (2.2) 

where A, B and C are linear combinations of the basic generators. Making use of the facts 
that St,-,, and S,I) are involutions and that G acts effectively on XIo) and X“’, (2.2) becomes 

[JIz. PI] = PZ [JIz. 9 1  = -KZPI [PI, 9 1  = KI J I Z  (2.3) 

where K I  and K Z  are two real parameters. So, each CKG is determined by ( ~ 1 . ~ 2 ) ~  and 
we will denote (glx,,x2J the CK group (algebra) with commutation relations given 
by (2.3). 

A generic expression for the second-order Casimir of 5cx,,x2) is 

c = P: + K &  + K~ J : ~ .  (2.4) 

Table 1. The nine two-dimensional CK geometries. 

Measure of dislance 

Measure Elliptic Parabolic Hyperbolic 
of angle Y I  = I K1 = o  KI = -1 

Elliptic Euclidean Hyperbolic 
SO(3) ISO(2) SO(2.1) 
[Jm Pi1 = Pz [JIZ. Pi1 = Pz 

[PI. Pz1 = 512 [P1.P21=0 [PI, Pzl = -Ju , 

C = Pi t P: + J:2 c = P; + P; C = Pi f P: - J:2 
0-Euclidean Galilean Co-Minkowskian 
I S O ( 2 )  IISO(1) / S o h  I )  

[JIz. Pi1 = 4 Elliptic 
xz = 1 1512. Pzl = -PI [JIz. 4 1  = -PI [Ju. Pzl = -PI 

Parabolic LJIz.  Pi1 = Pz [JIz. PI] = Pz 1.112, PI] = Pz 
*z = 0 [JIz. Pzl = 0 [JIz. Pzl= 0 [Ju. Pz1 = 0 

[PI. Pz1= Jn [ P I .  Pz1 = o  [PI.PzI=-JIL 
C = P: t J,?z 
Co-hyperbolic Minkowskian Doubly hyperbolic 

c = P: C = P: - J& 

SO(2.1) ISO(1.1) SO(2,I) 
Hyperbolic [ J I Z .  PI1 = Pz [ h z .  PI1 = Pz [Jn, Pi1 = Pz 
xz = -1 [JIz. Pzl = PI IJm 9 1  = PI IJiz. Pzl = PI 

[PI. Pi1 = JIZ [PI. 4 1  = 0 [PI, 9 1  -JIZ 
C = P; - P; + J:? c = P; - P: C = P: - P: - J:z 

The geometrical meaning of the above hypotheses is as follows: let 0 be the coset of 
HIo’ in GIH‘O’ X“’; the subgroup H‘” = (512) is the isotopy group for the action of 
G on Xtol, and JIZ is the infinitesimal generator of ‘rotations’ around this point 0. The 
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involution SIo, appears as the symmetry (half turn) around 0. Rotations around other points 
are obtained by conjugation. Likewise, let 1 be the coset of H") in G / H " )  X");  the 
subgroup H"' = (PI) is the isotopy group for the action of G on X"'. When one considers 
the action of G on G/H") F X'O), the 'first-kind' line I will appear as the trace of the point 
0 under the subgroup H"', hence the name of PI as the generator of translations along 
the line 1. The involution S(1) corresponds to the reflection in the line 1. The incidence of 
0 and 1 is embodied in the commutativity of the associated involutions. The remaining 
generator, Pz, whose involution SIz, commutes with S(O) and S I l )  is similarly associated 
to a 'second-kind' line I' through 0 and orthogonal to I ;  the incidence 0 E I' and the 
orthogonality between 1 and I' are again embodied in the commutativity of the associated 
involutions. 

Furthermore, the symmetric space X") (resp X"') has a canonical connection, whose 
curvature turns out to be constant and equal to K I  (resp K Z ) .  Finally we note the following 
re!evant aspects. 

(1) The sheaf of points on a first-kind line is an elliptical/parabolical/hyperbolical one 
according to whether K~ is greater thdequal toAess than zero. 

( 2 )  Idem for the sheaf of points through a second-kind line depending on K I K Z .  

(3) Idem for the sheaf of lines through a point now in concordance with K Z .  
So the three values K I ,  K I K Z  and K Z  are somewhat linked to the generators PI, Pz and 

J I Z  (see also expressions (2.8) and (2.9)). 
Table 1 displays the nine ZDCKG with K I  and K Z  reduced to the 'standard' values 

( I ,  0, - I ) .  It gives the motion group (as an abstract group), the Lie brackets and the 
second-order Casimir. It is worth remarking that the motion groups of ZD-CK systems fall 
into five isomorphic classes, as for some cases the choices of the involutions S,O), within 
an 'abstract' group can be made in two or more non-equivalent ways [31]. In other words, 
there are essentially different choices of the two homogeneous spaces XIo', X"' on which 
the same 'abstract' group acts. Among them there are two simple groups: SO(3) and 
SO(2,l). They appear in the corners of table 1, which correspond to non-zero values of 
both curvatures. The other three can be obtained by contractions starting from the simple 
ones. They are: the 2D-Euclidean group, E(2) (or I S 0 ( 2 ) ) ,  the 1+1 Galilei group, G(1+1) 
(or I I S O ( 1 ) ) .  and the I + 1 Poincar6 group P(l + 1) (or ISO(1.1)). 

Two kinds of Iw contractions are singled out in a natural way in this scheme, which 
correspond to contractions 'around' a point and 'around' a l i e .  The basic involutions 
and SI 1 )  determine a direct sum of gr., , yz )  into the subspaces of invariant and anti-invariant 
elements; more precisely, each involution determines a 252 grading of g(,,,,, and altogether 
a ZFz. This structure induces in general new kinds of contractions, called graded ones [32- 
341, that can be specialized to the CK algebras [35]. At the same time they determine an Iw 
contraction, obtained by keeping fixed the invariant elements, multiplying the anti-invariant 
ones by a parameter E ,  and then taking the limit E + 0. So 

Ifo) : local contraction : PI = & P I ,  PZ = E & ,  912 = J12 (2.5a) 

f~ l ' )  : axial contraction : PI = PI, P2 = EPZ. J 1 2  = EJ,Z  (2.56) 

where P I ,  P2 and J I Z  stand for the new generators. It is a matter of simple calculation to 
check that the effect of the local contraction is to make K I  = 0 while keeping fixed the 
value of ~ 2 .  and that an axial contraction keeps fixed K I  and makes K Z  = 0. In the first 
case, the contracted geometry 'approximates' the old one in a neighbourhood of a point and 
in the second case, the contracted geometry is valid near a (first-kind) line in the original 
geometry, hence the name of these contractions. 

E + 0 

E + 0 
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In table 1, the effect of a local contraction is to move to the adjacent cell in the 
middle column, while an axial contraction moves to the middle row. For instance, 
Euclidean geometry is the local contraction of the Elliptic geomeby and also of the 
hyperbolic geometry; the same happens for their motion groups (the Gel’fand triple 
SO(3) -+ E(2) t SO(2, 1)). Similarly Galilean geomeby appears as the axial contraction 
of both Euclidean and Minkowskian geometry (E(2) -+ G(l t 1) c P(l t 1)). Equivalent 
relations exist between the other rows and columns. 

Another remarkable feature of the ;?D-cKG is duality, which is a well known properly 
in projective geometry; for dimension two it boils down to the complete equivalence of 
points and lines. However, when metical properties enter the scheme, duality is not 
usually considered, and it is plainly clear that the properties of points and lines in, say, 
the Euclidean plane are rather different and preclude any equivalence. But we can still 
consider a transformation carrying points (or lines) of an original CKG into lines (or points) 
of another CKG-that we will call the dual of the former. At the Lie algebra level, consider 
a new choice of the three basic generators, PI, Pz, 912, given in terms of the old ones by 

PI = -J12 P2 = -4 912 =-PI .  (2.6) 

It is quite trivial to check that the new generators span a CK Lie algebra (2.3). and that 
the new values of the coefficients K I ,  K Z  are equal to the old ones K Z ,  K I  (in this order). 
From the algebraic point of view, this amounts to an interchange of the role of the two 
basic involutions S,O,, S,,,. and geometrically conesponds to taking as points in the dual 
geometry the (first-kind) lines in the old, and conversely. We can describe this interchange 
by intmducing a Lie algebra isomorphism Do : g(x , ,K2,  --t g(,,,,*,), defined by the action (2.6) 
on the generators and whose action on the coefficients is 

~ ( K I ,  KIKz .  K 2 )  = (KZ. K I K ~ .  Kt). (2.7) 

In table 1 the duality corresponds to the reflection in the main diagonal (the elliptic, Galilean 
and doubly hyperbolic geometries are autcdual): dual geometries are in symmetric positions 
about this diagonal and have isomorphic groups of motion. This notion of duality can be 
generalized in the context of the ZD-CKG. A precise definition is given in [16,17]; for our 
purposes, we will say that a duality is a Lie algebra isomorphism gu,,.m, -+ g,.+;) which 
induces a permutation of the measure coefficients ( K I ,  K I K Z ,  K Z ) .  In tlus case there are six 
permutations of these three coefficients and the set of dualities can be expressed in terms 
of three of them, the just-mentioned DO, !Dt and Dz. These two new dualities transform the 
Lie generators in the following way: 

Note that, for K I  = 0 (KZ = 0), Dl (D2) are not automorphisms, so there is no restriction in 
assuming K: = I (K: = I )  whenever Dt (Dz) are applied In this case the action of both 
dualities on the coefficients is 

D I ( K ~ .  ~ 1 ~ 2 ,  K Z )  = ( K I .  ~ 2 ,  K I K Z )  

~ ( K I .  K I K Z .  K Z )  = ( K I K Z ,  ~ 1 .  K Z )  

K: = i 

K: = I .  
(2.9) 
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It is possible to give an explicit realization D of the CK algebras by matrices of g1(3, R). 
The expression for the infinitesimal generators is 

0 -Kf 0 
D(Pl )=  ( I  0 0) 

0 0 0  

/ o o  o \  
(2. IO) 

where the associations PI U K I ,  fz c) K I K Z ,  J ~ z  U K Z  appear again. This allows one to 
realize the 2D-CK groups as groups of hea r  transformations in R3. By exponentiation of 
the matrices (2.10) we obtain the one-parameter subgroups which are easily expressed in 
terms of a set of ‘generalized‘ trigonometric functions with a second variable K as a label. 
The (generalized) cosine C,(x) and sine S,(x) are defined by 

cosfix i f K > O  
1 i fK=O = 

coshfix i f K C 0  

i f K > O  1 .  - sin ,Ex 
J;; 
X i fK=O 

1 
-sinh&x ifK <O. .A 

(2.1 1) 

These generalized functions agree with the usual circular and hyperbolic functions for K = 1 
and K = -1, respectively. For K = 0 we have the ‘parabolic’ or Galilean trigonometric 
functions. The main value of this seemingly innocent extension of notation is that it allows 
a compact and clear way of writing many relations for classical and quantum CKG. We 
mention here only the most elementary properties: 

and also 

(2.12) 

(2.13) 

On the other hand, as we have mentioned in the introduction, the physkally relevant 
kinematical groups appearing in the Bacry-Levy Leblond classification [36] are also CK 
groups. If we take PI and PZ as the generators of the temporal and spatial translations, 
respectively, and JIZ as the generator of the pure inertial transformations, the six ZDCKG 
with K Z  < 0 have a physical interpretation as onedimensional kinematical geomehies (this 
is kinematics in (1+1) spacetime). According to the pair ( ~ 1 . ~ 2 )  these are: oscillating 
Newton-Hooke (1.0). Galilean (O,O), expanding Newton-Hooke (-l,O), oscillating de 
Sitter (or anti-de Sitter) (1, - I ) ,  Minkowskian (0, -1) and expanding de Sitter (-1, -1). 
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The involutions S(z)+ S(l) and Sto, are now the discrete symmetries: time reversal T, 
parity P and P T .  The local contraction ( K I  + 0) corresponds to the so-called spacetime 
contraction and the axial contraction ( 6 2  -+ 0) with the speej-space one. With other 
physical assignations of the generators of g,K,,u,) it is possible to obtain IO out of the 11 
kinematical groups. The static group is missing: it is not a CKG since its action on its space 
of lines is not effective. 

2.2. Central extensions of the Cayley-Klein algebras 

The non-trivial central extensions of a Lie algebra g are determined by its second 
cohomology ’ group H2k, W). For the CK algebras under consideration, the second 
cohomology group is either (0) (for the simple algebras so(3) and 4 2 ,  I)), W (for E(2) 
and “(1, I ) )  or W2 (for g(l, I)). 

From the point of view of physical applications, the extended groups often appear in 
relation with representation groups. Typically, the interesting representations of symmetry 
groups are projective ones, which can be linearized by using a representation group [37]. 
This group is an extension of the original group by the (dual of the) second cohomology 
group; in this case, this amounts to considering extensions of the algebra 0 by either [O). R 
or Rz. Let us first consider an extension by Wz for all the cases, with the understanding 
that in particular situations the extensions might be trivial (an additional reason for doing 
this so is that often a contraction ‘produces’ a non-trivial extension from a trivial one; this 
underlies many aspects of the non-relativistic limit 1271). Therefore, we will denote by Ij 

( j  = I ,  2) two new central generators, and take as the non-vanishing commutation relations 
for the extended CK algebra the following ones: 

1 4 2 .  pi1 = Pz [ J I z -  pzl = - K Z P I  - c ~ z I z  (2.14) 

with cr i ,crz  E W. Note that the extension with a2 # 0 is trivial if K Z  # 0 (redefine 
P, -+ PI + L Y ~ ~ ~ / K Z ) ,  and similarly, the extension with a, # 0 is trivial if K I  # 0 
(J jz  * Jtz + a1 I I / K I ) .  It is straightforward to pmve that the second-order Casimir of 

[PI, 4 1  = KI J I Z  + d~ 

i l Y , . h )  is 

C = p: + KzP: + KiJ:z + 20(2lzPi + 2CliIiJiz. (2.15) 

The characteristic properties of the non-extended CKG described in the previous 
paragraph can be easily translated to this case. The involutive automorphisms of glx,,1(2, 
(equation (2.1)) are extended to involutive automorphisms of 51g,,a, defined by 

sio) : ( P I ,  9, J i 2 , h ;  11) ----t ( - P I ,  -9, J i z ,  11, -12 )  

& I ,  : ( P i ,  p2, J I Z ,  I2.I i )  + (Pi, -Pz, - J n .  -11, I d .  
(2.16) 

I -  

Obviously, the identity and the three automorphisms s,,, s,,), s , ~ ,  = S,O,.S,~, constitute 

There are two basic contractions in ij,,,.s,. By making the following substitutions: 
again an Abelian group. 

Local contraction: PI = & P I  P2 = &PZ = J l z  1, &’Il 

12 = &I2 (217a) 

HZ = & 12 

Axial contraction: PI = PI PZ &P2 Jlz = &J12 JI, = &Il 

(2.176) 2 
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in the commutation relations (2.14) and taking the limit E + 0 we obtain a contracted 
extended CK algebra with the coefficient RI = 0 (local case) or ~2 = 0 (axid One). 

It is worth remarking that after the contraction (2.17) some trivial extensions become 
non-trivial ones. When it is separately considered, only the Galilei case G(1+ 1) has a true 
two-dimensional space of extensions; this group comes from contraction of groups which 
have a me one-dimensional space of extensions (E(2) and P(1+ 1)) and these ones come 
in turn from contraction from the simple groups (SO(3) and SO(2, 1)). 

The set of six dualities existing in the non-extended case can also be implemented in 
&K,,K21. We give here only the expression for the extended ordinary duality, Do, since it is 
the only one that will be used in the qdeformation of &,t,K2,. Its action over the generators 
of &,,,,,,, the ~i coefficients and the extensions parameters CY; is 

fiO(Ph P2.512.~1,~2) = ( 4 2 ,  -9, -p1, -129 -11) 
(2.18) 

% ( K l r K I K 2 1 K 2 )  = ( K z , K I K ? , K I )  & ( 0 1 1 , ~ 2 )  =(CYz*ffl). 

It can be easily checked that fi0 is an automorphism of &e,.,,. 

3. The quantum Cayley-Klein algebras 

We recall that an associative algebra A is said to be a Hopf algebra [24] if there exist two 
homomorphisms called coproduct (A : A --+ A @ A) and co-unit (c : A + C), as well 
as an antihomomorphism (the antipode y : A + A )  such that, VG E A 

where m is the usual multiplication m(a @ b) =ab. 

3.1. The quantum non-extended Cayley-Klein algebras 

The universal enveloping algebra of the CK algebra g(u,,w2, is a (classical) Hopf algebra with 
coproduct, co-unit and antipode given by 

A(X) = 1 @ X  + X @  1 A(1) = 1 @ 1 

E(X) = 0 € ( I )  = 1 y(X) = -x (3.4) 

where X E {PI, 9. J I ~ ] .  An algebra element Y is said to be primitive if A(Y) = 
I @ Y  + Y  8 1. 

To obtain a quantization 138,391 of U9(4,rzI, we have to define a deformed Hopf 
structure on the completion of Ug,,,,,, (the universal enveloping algebra of gIK,,<J denoted 
as A = Ug,M,,~z,,&C[[zll (where C [[z]] represents the associative algebra of formal power 
series on z and coefficients in Ug,Kt.r2,). Such an algebra must be isomorphic (as Hopf 
algebra) to U9cK, ,K2,  when z + 0. 

Once the deformed coproduct has  been given, E and y are derived from it by solving 
(3.2) and (3.3). On the other hand, the commutation relations associated with a given 
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coproduct have to be compatible with it as a homomorphism. We introduce the following 
deformed comultiplication (with q = e*): 

A(Pz) = 1 @ Pz+ P z 8  1 

1 
A ( P ~ )  = e-5'5 8 pI + PI 8 e+2 

~ ( 5 ~ ~ )  = e-izfi 8 J~~ + J~~ 8 e?" 

(3.5) 
I 

This definition is easily proved to be consistent with (3.1) and has the right 'classical' limit 
(all generators are primitive when L --+ 0). 

The deformed commutation relations are obtained by imposing A to be a homomor- 
phism. This general condition is translated into three equations: 

1 1 
A([JIZ, 41) = e-5" B ~ 2 ,  SI + ~ 2 ~ ~ 2 1  e+ 

A([P~,  P ~ I )  = e-~*P* 8 [pl, SI + [ P I ,  SIB ej" 

A ( [ J , ~ ,  P I ] )  = e-z5 @ [ ~ 1 2 , ~ 1 1 +  [ J ~ Z , P ~ I  ezpz 

(3.6) 1 I 

and the limit z -+ 0 of their solutions have to be precisely (23). A simple Ansatz for a 
solution is to keep the 'classical' commutators for [ P I ,  Pz] and [J~z, Pz], and to try for the 
remaining commutator 

(3.7) 

This is indeed a solution of (3.6) for any function g(z).  Requiring lim,,og(z)S-zz(Pz) = 
Pz, we must choose g ( r )  such that lim,,og(z) = 1. As we shall see in the next section, 
the simplest solution g(z) = 1 allows us to preserve formally [&, PI ]  under contraction 
processes. Therefore, we pose as deformed commutation relations associated with (3.5) the 
following ones: 

[ J 1 2 ,  PI1 = s-z (9) [JIz, pz1 = -K#I [ P ~ , P z l = K i J i z .  (3.8) 

The standard q-numbers [XI, = (qx - q-') / (q - q - ] )  (that in fact correspond to g(z )  = 
(2z)/(ez -e-')) are now replaced by the generalized sine function (2.11). Note also that 
(3.8) guarantees the existence of a deformed set of commutation relations whatever the 
value of the coefficients K;. We shall emphasize this point below. 

A straightforward calculation shows that, for X E [ P I ,  Pz, JlZ] the co-unit E and the 
antipode y are 

1512. P I ]  = a(z)(ezp2 -e-"') = g ( r )  S - ~ Z ( P ~ ) .  

I 1 
E ( X )  = D y(x) = -eZzp2 x e-?''. (3.9) 

The latter expression can be rewritten in matrix form by using (3.8) and expanding the 
antipode as an exponential of the adjoint action. Generalized trigonometric functions appear 
again as essential constituents of our structure: 

C W ~ ( $ L )  0 - K I S X , Y ~ ( $ Z )  

1 (3.10) 
K 2 S W 2 ( t Z )  0 C,,,(fz) 
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A second-order element belonging to the centre of the Hopf algebra A under (3.8) can 
be found. The computation is rather simple provided the essential properties (2.12H213) 
of the generalized trigonometric functions are known. The Casimir reads 

c, = 4 c , l , ( ~ z ) [ s , z ( ~ P * ) ~ z  + ( 2 / z ) s K , , ( ; z ) w :  + K I J 3  (3.11) 

The coincidence of the limit z -+ 0 of C, with (2.4) can be easily checked. The explicit form 
of the quantum algebra properties for the nine possible cases is displayed in table 2, where 
each q-algebra is described by (1) the name of the corresponding 'geometrical' algebra: 
(2) the pair (K], K~); (3) the deformed commutation relations; (4) the matrix realization of 
the antipode acting on the column vector ( P i ,  Pz, J12) and, finally, ( 5 )  the 'second-order' 
q-Casimir. The coproduct (3.5) and the co-unit (3.9) are the same for the nine cases. 

Table 2. The nine Ulree-dimensional guanfum CK algebras. 

If we take for Pz the fundamental matrix representation (2.10) of the algebra, we 
obtain S-,z(D(Pz))  = ( .SK,r2(z ) / z )D(P~) .  This fact allows us to define the fundamental 
representation of the quantum CK algebra (obviously verifying (3.8)) by 
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(3.12) 

It is worth of remarking that this fundamental quantum representation coincides with 
the classical one (equation (2.10)) when either K I  or ~2 (or both) are zero. 

As far as physical applications are concerned, the co-Euclidean quantum algebra has 
already been shown to be relevant as a model to describe the symmetry of the harmonic 
chain [ 1 I]. The fusion of phonons has been derived fm the quantum structure and the 
spacing of the chain is related in that model to the deformation parameter. 

3.2, The quantum extended Cayley-Klein algebras 

We shall discuss hl'o possible approaches to deformations of the extended CK algebras. 
for all CK algebras 

and we deform the classical Hopf structure of U&,,,, making the ansatz that the new 
generators 11.12. are chosen with the same coproduct as, respectively, 512 and PI,  in order 
to obtain deformed commutation relations with the correct classical limit. Both generators 
of the extensions are again required to be central. This approach leads to three subcases, 
depending on whether both 11 and 12, or only one of them (I1 or 12) is non-primitive. 

The second main approach is to consider a four-dimensional extended algebra for all CK 
algebras, adding only one new generator (I1 or 12) according to any of the two following 
possibilities: 

[h PI] = [Jn, = -K#I [PI, 4 1  = K I J I Z  +(YiIi (3.13) 

[JIz. Ptl = 9 (3.14) 

(It is better not to drop the subscripts in II, 12, (YI .  ( ~ 2 . )  The first extension is again 
trivial if K I  # 0, while the second is trivial if K Z  f 0. In both cases, it is possible to deform 
all extended CK algebras with a generator 11 (12)  which is required to be central and to have 
the same coproduct as J I 2  (PI). 

3.2.1. Hopf structures for five-dimensional extended algebras. 

fa) 11 and 12 non-primitives. In principle, we may enlarge the non-extended algebra 
coproduct (3.5) for the extended algebra as follows: 

Firstly, we consider a five-dimensional extended algebra 

[JIz. 9 1  = -MI - 4 2  [PI, PzI = K I  JIZ.  

(3.15) 
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We must check that (3.15) is an algebra homomorphism with classical limit given by 
(2.14). where It and 12 are central generators. This latter condition means that we have to 
:mpose 

A([&, I j ] )  = [ A ( P z ) ,  A(Ii)]  = A([J12, I i ] )  = 0 i = 1,2.  (3.16) 

However, (3.16) is already a'strong constraint that it is only fulfilled if K I  = KZ = 0. This 
coproduct is compatible with the commutation relations 

[JIZ, 9 1  = -azh [PI, 4 1  =alll .  (3.17) 

It remains to solve the homomorphism condition for the bracket 

[JIZ. PI1 = f ( L  PZ). (3.18) 

It is easy to check that (3.18) requires 011 = az = 0, and in this case f (z ,  9) = S-d(Pz).' 
Therefore, we recover the quantum non-extended Galilei algebra as the only possibility 
fulfilling (3.15). 

(61) I I  primitive and I? non-primitive. Another natural candidate to coproduct with I I  
primitive and I2 non-primitive is 

A ( J d  = 1 8 312 + JIZ @ 1 

~ ( p , )  = e - y z ~ ~ J ~ z e - i z ~ ~ h  8 pl + pl 8 e y ~ ~ s J n e y ~ ~ ~ h  

~ ( q )  = e - i z ~ i J n  e - - m i l t  z + p2 8 eFJl2ei""t 

A(II) = 1 8 II + II @ I 

I I I I 

(3.19) I I I I 

~ ( 1 ~ )  = I e - T Z t l J l z e - ~ Z W h  I 8 lz + l2 8 e$r~zh2eizui l t  I 

Now we have to require that (3.19) defines a homomorphism with central elements I I ,  
12, and with a set of deformed commutation relations consistent with (3.19). which are 

[JIZ, PI1 = 4 [ J lZ ,  9 1  = -QP1 - a212 [PI, PZI = S-P(K1JIZ +alIl). 

(3.20) 

These requirements lead us clearly to a possible solution if we assume K ,  = 0 (see 
appendix). This simplifies our coproduct which now reads 

A ( J d  = I 8 J12 + JIZ 8 1 A(I1) = 1 8 I ,  + I I  8 1 

The commutation relations consistent with (3.21) are 

(3.21) 
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The co-unit is defined as 

E ( X )  = o x E {p1. 9. J ~ ~ .  it, r2i 
I 

and the antipode is simplified due to the central nature of e*ZzuL": 

(3.23) 

I I 
y(X) = -eT2""'X e-F"' = -X X E {PI, PZ. JIZ.II,IZ). (3.24) 

The second-order invariant is given by 

C, = P,'f~zP:+2adzPl + ~ S - & ~ I I ) J ~ Z .  (3.25) 

(bZ) Iz primitive and 1, non-primitive. This case is quite similar to the last one. The 
proposed coproduct is 

A(Pi) = 1 €39 + PI €3 1 A(lz) = 1 €3 Iz + 12 €3 I 

(3.26) 

1 I I I A([]) = e-yrylPl e-T24h €3 II .+ Il @,2Z"pl e i Z 4 h  

and the deformed commutation relations are 

[ J I Z ~  Pi1 = 4 [JIz, Pzl = -s-zdKzpl +CX2lz) [PI, SI = ~1 JIZ + a111 . 
(3.27) 

Now the requirement of 11, IZ being central elements leads to a set of equations, which 
certainly have a solution for KZ = 0 (see also the appendix). This simplifies our coproduct 
again: 

NPI)  = 1 €3 PI + PI €3 1 A(I2) = 1 €3 12 + 1, €3 1 

(3.28) 
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3.2.2. Hopf structures for four-dimensional extended algebras. 
(cl)  11 primitive. We choose the coproduct 
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A ( J d  = 1 8 512  + 512 @ I 

A(Pz)=e 2 e 2 ~P2+Pz@eZzY1J12eI"1'L 

A(I1) = 1 @ 11 + 11 @ 1 
I 1 1 1 

(3.32) - - z q f , 2  --"I, 

1 I 1 1 A(PI) = e-TzClhZ e-Tzal/l @ p1 + p1 8 eZ'xlh2 e5ZUlh . 

It is straightforward to prove that (3.32) defines a homomorphism with central element 
11 provided the following commutation relations are satisfied: 

[J12, PI1 = P2 [JIZ, pzl = --KzPi [ ~ 1 . ~ 2 1  = S - Z ~ ( K I J ~ ~ + ( Y I I I ) .  (3.33) 

The co-unit is again identically zero and the antipode is 

With x E ( P I ,  Pz,512,11}.' The explicit form of the antipode in terms of generalized 
trigonometric functions is 

Recall that, at a classical level, the extensions by 11 are trivial when K I  # 0. The 
remaining cases give rise now to quantizations of the extended Euclidean, Galilean and 
Minkowskian algebras. Physical applications of these deformed structures are worth 
studying, since it is known that the presence of 11 corresponds in the Minkowskian 
and Galilei classical algebras to a uniform and constant force field built-in in the 'free' 
kinematics. 

The deformed second-order Casimir is now 

(c2) 12 primitive. For this subcase the coproduct is 

(3.36) 

(3.37) 
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and the commutation relations, co-unit, antipode and Casimir are given by 

[J12. PI1 = 9 [JIZ, 9 1  = - L ' ( K 2 P I  4- a z 1 2 )  [ P I .  P2l = KI J I Z  (3.38) 
I 1 

= 0 y(x) = -eZZK2'1X e-ZzK2'1 X = { P I ,  P2,J12. 121 (3.39) 

(3.40) 

(3.41) 

Remember that these extensions by 12 are trivial for K~ # 0; in this case we recover 
the quantum nonextended relations with a primitive generator PI. The three non-trivial 
extensions correspond to the quantum deformations of the 'absolute time' kinematics, 
which are the oscillating and expanding Newton-Hooke algebras and the Galilei algebra 
(in geometrical terms, the co-Euclidean, co-Minkowskian and Galilean algebras). For all 
of them, 1 2  denotes-in the classical interpretation-the mass of the system. Finally, note 
that, in the classical case, this extended Newton-Hooke oscillating algebra is isomorphic to 
the oscillator algebra. Here this (classical) isomorphism again relates this quantum algebra 
with the deformed harmonic oscillator algebra defined in [6] and [40]. 

Another possibility, not studied here in detail, consists in taking two generators of the 
nonextended algebra as primitive, while the other one and the central extensions 11 (or 12)  

as non-primitive. It is easy to check that only two q-deformed four-dimensional extended 
algebras appear and both correspond to the Galilei case. One of these (extension by 12) 
was originally obtained by the Firenze group [9, IO] and OUT basis is [ B ,  T, P ,  M )  + 
(Jl2, P I .  P 2 . 1 ~ ) ) .  In the classical case, this extended Galilei algebra describes the Galilean 
kinematical symmetry of a particle with mass (the mass operator is just 12). The dynamical 
symmetry of magnons in the Heisenberg model has been described by using this quantum 
extended Galilei ( I  + I )  algebra. These authors have shown that the symmetry of the 
quantum group is completely equivalent to the Bethe ansatz for these systems and that the 
deformation parameter has again the physical meaning of chain spacing. The remaining 
q-deformation corresponds to the extension by 11, with P2, and J t 2  as primitive elements. 

4. Fundamental structure of the 3D q-CK algebras 

The underlying scheme of involutions, contractions and dualities characterizing the classical 
CK structure arises from the analysis of its geometrical meaning, as we have shown in 
section 2. Once we make a deformation of the CK Lie algebras, the basic geometrical 
notions such as homogeneous spaces, spaces of points and lines, curvatures, etc are no 
longer applicable; we are just dealing with a precise deformation of the CK algebras. The 
remarkable thing is that we can translate to the quantum case the whole non-deformed 
fundamental structure that characterizes the (classical) CKG. This fact has a rather simple 
but important consequence: the deformation parameter z also has to be transformed under 
the action of the quantum involutions, contractions and symmetries, and we have to study 
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the properties of these transformations for the complete Hopf structure. The possibility 
that the deformation parameter has to be related with some dimensional quantity was firstly 
stated in the restricted context of contractions of quantum algebras [5].  This is actually 
the case for the physical systems for which these quantum algebras have been successfully 
introduced as symmetries [8-1 I]. The q-CK scheme suppow this point of view and, at 
the same time, shows that the geometrical concepts that define the intrinsic structure of the 
classical CK algebras are also relevant in order to build the corresponding quantum objects. 

In the following we will give the generalized notions of involutions, contractions and 
dualities compatible with the quantum deformations defined in the previous section. All of 
them agree with their 'classical' counterparts in the limit q 3 1. For the sake of clarity, 
we present separately the non-extended and extended cases. 

4.1. Fundamental structure of the non-extended q-CK algebras 

Involutive automorphisms. The involutions in Uqg,x,,rz, can be defined as follows: 

' 

The product Sf,, = S&,Sf,, is also an involution which together with (4.1) constitutes 
an Abelian group (& @ &). These symmetries leave invariant the commutation relations 
(3.8) and the entire Hopf structure defined in 3.1. 

Contractions. Two basic contractions also exist in Upgcxl,K2,. We define them in terms of 
the IW contractions by considering a transformation-dependent on a new parameter E - o f  
the generators and the deformation parameter. The transformed generators and the new 
deformation parameter are denoted by Pi, Pz, J12 and w ,  respectively. The explicit form 
of these two contractions is 

q-Local contraction: PI = EPI Pz = EfZ Uiz = J12 w = - E + O  
2 

E 

(4.2) 
z 
E 

+Axial contraction: PI = Pi Pz = E P ~  Uiz = 8Ji2 w = - E -P 0 .  

14.3) 

After writing the new commutation relations and the new Hopf structure, it can be easily 
shown that the limit E + 0 of (4.2) or (4.3) gives rise to a q-CK algebra with, respectively, 
K I  = 0 or KZ = 0. The composition of both transformations is also a contraction that makes 
both coefficients vanish. In order to show how this works, let us explicitly compute the 
q-local contraction. 

We apply the contraction transformation (4.2) to the commutation relations: 

e-0 
[612,PII= ES-3(PZ) = ES-cZl"2(P2/E) = S-wz(Pz)+ S-w1p22) 

(4.4) 
E+O 

[Jlz, 9 1  = -KzEPI = -KzP]-f - K2Pi 

[PI, Pz] = E K i  Jiz = &'KIJIz* 0 .  2 

Note that the Lie bracket [ J n ,  P I ]  is formally preserved under contraction (due to the 
definition (2.1 1) of the generalized sine function). It is easy to check that any other choice 



which coincides with making K ,  = 0 in (3.10). 

Dualities. The set of six dualities in g(Y,,X2) can be genemlized to Uqg(6,,xz) by defining 
suitable transformation properties of L and preserving the 'classical' effect over the 
generators and coefficients K;. The three basic dualities D:, D: and D! are displayed 
in table 3 which gives the transformed generators (PI ,  "2. &), deformation parameter (w) 
and meisure coefficients (K ' ; ) .  By means of these transformations, the 'dual' commutation 
relations, second-order Casimir and Hopf homomorphisms (writing for the antipode y its 
associated matrix acting on the column vector (Pi, Pz, &)) are obtained 

Two interesting remarks concerning the meaning of these quantum dualities can be 
made. First, the ordinary quantum duality can be applied to the nine geometries and 
leaves the complete structure of U,,g,ul,x,, invariant. This means that the classical duality 
between points and lines in a pair of dual geometries is now translated into a duality of 
the deformed Hopf structures. Therefore, this duality is an automorphism in Uqg(ct,K2) and 
it establishes an isomorphism between quantum CK algebras preserving PZ as primitive 
generator. 

On the other hand, the remaining dualities can only be meaningfully applied to some 
geometries: to apply DT (Q), K I  ( ~ 2 )  must be different from zero (a discussion of the 
geometrical meaning of these restrictions for the classical case is given in [16,17]). Their 
effect on Uqg,K, .Kz,  consists of the change of the primitive generator. The classical dualities 
relate different geometries with the same CK Lie group. Their quantum analogues connect 
different possibilities to choose a primitive generator within the ~ - C K  algebra This is 
illuminated by considering any of the orthogonal q-CK algebras (i.e. so(3), or so(2, 
where all dualities can be applied. We may take any generator as primitive element and 
we shall find-in any case-a formally similar deformed Hopf structure and commutation 
relations. For the other algebras the restriction on the values of K )  now prevents the deformed 
commutation relation from disappearing under the change of the primitive element. In this 
sense, these dualities define a kind of formal equivalence between deformed algebras. 
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4.2. Fundamental structure of the extended 9-CK algebras 

The pattern described above for the non-extended CK algebras can be reproduced for the 
extended ones. For the sake of brevity, in the sequel we summarize the main results about 
them. 

Involurive auromorphisms. For each of the five different quantizations defined in 3.2 there 
exists a commutative group of four symmetries (including the identity). These five sets of 
involutions have the same effect on the generators as in the classical case (see (2.16)). The 
only difference lies in the transformation properties of the &formation parameter z. We 
show the action of the basic involutions, s&, s&, on z: 

Case sg,, s:l) 
bllcl  Z + Z  z + -2 

b2lc2 7. + -2 z + z  

(4.7) 

Confractioons. The contraction procedures simply correspond to making ~i -+ 0; their 
complete effects on generators and on the deformation parameter z are displayed in table 4. 

Table 4. Contractions of Uqg,K,,m). 

Case K ; - 0  Quanmm algebra msfonaLion 
bl uz -+ 0 QIZ = EJIZ  Pi = PI Pi = EPZ Uz =c2lz P I  = e l l  w = I / E  

b2 N I  -+ 0 J12 = JIZ PI =&PI Pi = E P ~  12 = €12 II = E'II w = Z / E  

C l  M I  -+ 0 J n  = J12 PI = EPI 9 = e P i  = 211 w = de' 
KZ -+ 0 912 = 6 h 2  PI =Pi  P2 =hPz PI = E l ,  w =I16 

c2 K I + o  112=512 Pj=&Pi pz=&P2 4 = E h  w = z fe  
~1 -t 0 912 = c h i  PI = PI P> = EPZ 1 2  = E'IZ UI = r/EZ 

Ordinary duality. The ordinary duality I@ acts in U,&,,,K,, as follows: 

and it transforms the coefficients K; and a; as in (2.18). On the other hand, lb: interchanges 
by pairs the following CK quantizations: ( b l )  with (b2 )  and ( c l )  with (c2) .  

5 .  Concluding remarks 

The main result of this paper is the establishment of a systematic setting which allows 
a unified pattern of description of some q-deformations of CK algebras and their central 
extensions. Within this set of q-deformations, the deepest characteristics of the classical 
CKG survive and permit one to consider contractions, dualities, etc. We have discussed here 
ar some length only the case N = 2, and even while some of the individual deformations of 
the non-extended groups have been found previously, we feel that the method is valuable, 
because of the structural scheme it affords. One rather appealing trait is the natural 
appearance of the deformation parameter as a quantity with physical dimensions. This 
is particularly clear in the 'kinematical' cases KZ < 0 where the basic involutions could 
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be interpreted as the quantum versions of parity and time-reversal automorphisms. From 
(4.1H4.3). (4.7) and table 4, it follows that the deformation parameter is transformed under 
involutions and contractions in the same way as the primitive generator. In those cases where 
9 is primitive, it is therefore natural to assume that z has dimensions of length (recall that 
for ~2 6 0, P2 generates space translations). This is indeed consistent, as has been proved 
by the lattice models built by using the Poincad and Galilei quantum algebras [9-1 I ] .  In 
fact, it is also possible to consider other two kinematical assignations of the geometrical 
generators with P2 playing the role of time translation or inertial transformation, so that the 
possibility of finding different models where z might have different physical meanings is 

Another remarkable but rather expected fact is that as one moves from the simple 
cases (both ~i # 0) towards the K ;  = 0 algebras, more essentially different possibilities 
of deformation appear. This kind of 'degeneration' is indeed also present at the purely 
classical level. 

In addition to these remarks, perhaps the main interest of this kind of approach lies in 
the possibility of its extension to higher values of N .  In the classical CK groups this is 
possible and a nice scheme includes the simple groups as well as the r-quasisimple ones 
obtained by contraction. independently of the value and the parity of N .  One could expect 
some differences between the even and odd cases for the quantum deformations of orthog- 
onal groups, as they belong to different series of simple groups. The first odd case, N ,= 3, 
is attractive from a physical point of view, and a supply of different q-deformations of the 
(2 + 1)dimensional kinematical groups would undoubtedly open the way to new model 
building. Furthermore, having a comprehensive idea of the first odd case would also clarify 
the way--or show the blocking difficulties-to an extension to higher dimensions. Work in 
this direction is in progress. 

open [81. 
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Appendix 

To show whether (3.19) is compatible with II and 12 being central elements we have to 
compute U P I ,  I i l ) ,  A(tP2, I i l ) ,  A([J12, I i J )  for i = 1.2 and to impose these brackets to 
vanish under these central conditions. Since I ,  is a primitive element it is easy to check 
that all these requirements are fulfilled. However, the problems arise when we study the 
non-primitive extension 12. 

It is straightforward to see that A([&. 121) = 0 if and only if [JIz, 121 = 0. Hence, 
only the commutation relations between non-primitive elements remain be studied. If we 
compute them w> obtain 

A([F'i, 121) = e-2K1J12e-zu~'~ @[Pi, 121 + [P i ,  12] @ ezKIJlz e"I" 
1 I I I 

+ e - x z x ~  J n  e - - x q l ~  z i2 8 [p i ,  eTzKIJ1l eTZu~'~] 
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where i = 1,2. To go on with the computation, we take into account the fact that a 
power-series form of the generalized trigonometric functions (2.11) is given by 

It is possible to expand the brackets involving exponentials in (AI) and the resulting power 
series can be rewritten as generalized sine and cosine fundons by means of (A2). The final 
expression reads 

~ [ p ~ ,  12] = e-ZY!J!ze-zWf~ B [PZ ,  121 + [PZ,  rZ] @&'lJ12 eZalfl 

1 1 
+ e - i z ~ j  J L ,  - - z q I t  e 2 J Z @ ( U  - c ~ ~ ( K I ~ z ) ) P z  

I I - r u l J u  -rulh +(KZPI + m I z ) S x 2 ( K 1 f Z ) ) e 2  e2 + ( U  - C K 2 ( ~ l + ) ) ~ 2  
I 1 I I - ( K ~ P ,  + (1212)SY2(K~fL)]  e-TzKlJ12 e-TZol'l @ eTzKlJ12 ei"1"I 2 .  

Since S,(O) = 0, C,(O) = 1, So(x) = x and CO@) = 1, the terms limited by keys must 
vanish to get 12 as central element. Hence, K~ must be zero to preserve the homomorphism 
conditions (A3). 

The proof is similar for the coproduct (3.26); now, the non-primitive extension is 11, 
and we have to make K Z  = 0 in order to get a Hopf algebra homomorphism. The reader 
may check that both results are related by the qduality 6; defined in (4.8). 
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